Information sheet for the course Physics I

Physics I
University: Alexander Dubček University of Trenčín
Faculty: Faculty of Industrial Technologies in Púchov
Course unit code: <i>MT-P-9</i> Course unit title: <i>Physics I</i>
Type of course unit: compulsory
Planned types, learning activities and teaching methods:
Lecture: 2 hours weekly/26 hours per semester of study; face to face
Seminar: 1 hour weekly/13 hours per semester of study; face to face
Laboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face
Number of credits: 5
Recommended semester: 2 nd semester in the 1 st year full-time
2^{nd} semester in the 1 st year part-time
Degree of study: the 1 st degree of study (Bachelor's degree)
Course prerequisites: <i>PP-P-1 Mathematics I</i>
Assessment methods:
Current control on each lecture – at least three positive knowledge rating. The writing final $A = 75$ points $R = 70$ points $C = 65$ points $D = 60$ points $E = 55$ points at least
exam: $A - 75$ points, $B - 70$ points, $C - 65$ points, $D - 60$ points, $E - 55$ points at least.
Learning outcomes of the course unit:
Students have deeper knowledge of classical and modern physics, laboratory skils, ability to use
mathematics to solve physics problems, critical thinking skills, effective written and oral communications skills.
Course contents:
Introduction to study of physics, paradigms of current physics, the relation of physics to other
sciences and its status in modern society, Physics Nobel Price in actual year, international
achievements of Slovak physics, meaning of physics learning for materials sciences.
Matter, dark matter, substances, fields, space, time, space-time, incident.
Introduction to vector analysis, differential and integral calculus.
Paradigm of Newtons physics and special relativity theory.
Location, motion, its description and forms, atomic theory of matters.
Newton's laws of motion, special theory of relativity and its practical consequences.
Energy, dark energy, gravity, introduction to general theory of relativity and its practical
consequences, Higgs boson.
Introduction to physical filds, introduction to electromagnetism, comparisons of gravitational
and electrostatic field.
Mechanics of mass point.
Mechanics of mass-points system.
Mechanics of continuum, conservation laws.
Quantum physics paradigm, Copenhagen interpretation of quantum physics, parallel universes
hypotesis, standard model of elementary praticles and forces, M-theory and superstring model,
actual cosmological theories of universe.
Introduction to thermodynamics, heat transfer and non-equilibrium thermodynamic systems
Recommended of required reading:
Feynman, R.: The Feynman Lecturers on Physics I-III, California Institute of Technology-

Addison Wesley Longman, 1970, ISBN-10: 0201021153.

Young, H. D., Freedman, R. A.: University Physics, Addison-Wesley, New York, 1996. Kittel Ch.: Thermal Physics, Acad. Press, NewYork-London, 1997.

Hawking, S.: Ilustrovaná stručná história času, Slovart, Bratislava, 2004, ISBN: 978-80-8085-920-6.

Veis, Š.: Všeobe	cná fyzika I, Alf	a, Bratislava-P	raha, 1986.		
Krempaský, J.: I					
Language: Slov	ak				
Remarks:					
Evaluation hist	ory:				
Α	В	С	D	Е	FX
Lecturers: doc.	Mgr. Ivan Kop	al, Ph.D.			
Last modificati	on: 31.03.2014				
~	$T \rightarrow T$	anicová, PhD.			