Information sheet for the course Computer - Aided Materials Engineering II

Faculty: Faculty of Industrial Technologies in Púchov Course unit code: MI-P-29 Course unit title: Computer - Aided Materials Engineering II Type of course unit: compulsory Planned types, learning activities and teaching methods: .e.cture: 0 .aboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face Number of credits: 2 Recommended semester: the 5 ^d semester in the 3 rd year of the full-time form of study. the 5 ^d semester in the 3 rd year of the part-time form of study. Degree of study: the 1 st degree of study (Bachelor's degree) Ourse prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Xssesment methods: o accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of numerical method while this tethod is used for solution of one specific tasks with utilisation of numerical software, which is is able to solve the simple specific task with utilisation of the dynamic loading. .currents: number of the course unit: istudent is able to solve the simple specific task involving solid body system under the dynamic loading. .currents: numerical method while element method FEM). Furthermore, students can make t	University: Alexander Dubček University of Trenčín						
Course unit code: MI-P-29 Course unit title: Computer - Aided Materials Engineering II Fype of course unit: compulsory Planned types, learning activities and teaching methods: Lecture: 0 Planned types, learning activities and teaching methods: Planned types, learning activities activities and teaching method study. Justice and the field semester: It is able and the field semester: Planned types, learning activities activities and the form of study. Ourse precequisites: accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of mamerical method while hits is undent is able to solve the simple specific tasks with utilisation of the commerical software, which is formonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various indo g materials w							
Computer - Aided Materials Engineering II Fype of course unit: compulsory Planned types, learning activities and teaching methods: secture: 0 Seminar: 0 .aboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face Number of credits: 2 Recommended semester: the 5 th semester in the 3 rd year of the part-time form of study. the 5 th semester in the 3 rd year of the part-time form of study. Seconse prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Sessesment methods: To accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to reperare and defend the project which is closely connected with utilisation of numerical method while this method is used for solution of one specific tasks with utilisation of the commercial software, which is iommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various indis of materials which are under the static, dynamic or thermal loading. Course and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of onstructions. Itarnonic analysis and transient analysis of constructions with bumped or boorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Rec							
Expective of course unit: compulsory Planned types, learning activities and teaching methods: .ecture: 0 ieminar: 0 .aboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face Number of credits: 2 Recommended semester: the 5 th semester in the 3 rd year of the part-time form of study. Left of study: the 1 rd degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Sessesment methods: co accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specified task involving solid body system under the dynamic loading. earning outcomes of the course unit: Wadent is able to solve the simple specific tasks with utilisation of the commercial software, which is omonnly used in the field dynamics and the given software is based on the fine element method from software is based on the fine element method FEMJ. Furthermore, students can make the models and solve the problems relating to various tinds of materials which are under the static, dynamic or thermal loading. Course contents: numd ata. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. reatures					noineerino II		
Planned types, learning activities and teaching methods: secture: 0 Secture: 0 Jaboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face Number of credits: 2 Recommended semester: the 5 th semester in the 3 rd year of the full-time form of study, the 5 th semester in the 3 rd year of the part-time form of study. Degree of study: the 1 rd degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Sessesment methods: To accomplish the given subject, student is obliged to be present at the lessons with the reference to precifications introduced in the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specific tasks with utilisation of the commercial software, which is commonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various inds of materials which are under the static, dynamic or thermal loading. Course contents: nput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Geatures and elements of fracture mechanics. Concentration of stasks focused on the dynamic or obsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic optimation of the computational models and solution of tasks focused on the dynamic coading, heat transfer or transition as well as force							
ecture: 0 Seminar: 0 Laboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face Number of credits: 2 Recommended semester: the 5 th semester in the 3 rd year of the full-time form of study, the 5 th semester in the 3 rd year of the part-time form of study. Degree of study: the 1 ^{sd} degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Sessment methods: To accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to prepare and defend the project which is closely connected with utilisation of numerical method while this method is used for solution of one specified task involving solid body system under the dynamic loading. .earning outcomes of the course unit: Situdent is able to solve the simple specific tasks with utilisation of the commercial software, which is commonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various inds of materials which are under the static, dynamic or thermal loading. Course contents: regutares and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or bisorbed vibrations. Creation of the computational models and solution of tasks focused							
Seminar: 0 aboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face Number of credits: 2 Recommended semester: the 5 th semester in the 3 rd year of the full-time form of study, the 5 th semester in the 3 rd year of the part-time form of study. Degree of study: the 1 st degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Assessment methods: °o accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of numerical method while this semonoly used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: 'utudent is able to solve the simple specific tasks with utilisation of the commercial software, which is commonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various inds of materials which are under the static, dynamic or thermal loading. Course contents: rput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stasks focused on the dynamic adding, heat transfer or transition as well as forced vibrations. R							
Laboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face Number of credits: 2 Recommended semester: the 5 th semester in the 3 rd year of the full-time form of study, the 5 th semester in the 3 rd year of the part-time form of study. Degree of study: the 1 rd degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Assessment methods: Fo accomplish the given subject, student is obliged to be present at the lessons with the reference to precifications introduced in the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of numerical method while this method is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Number is able to solve the simple specific tasks with utilisation of the commercial software, which is sommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various einds of materials which are under the static, dynamic or thermal loading. Course contents: mput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. reatures and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of onstructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or thsobrobed vibrations. Creation of the computat	Lecture: 0						
Number of credits: 2 Recommended semester: the 5 th semester in the 3 rd year of the full-time form of study, the 5 th semester in the 3 rd year of the part-time form of study. Degree of study: the 1 th degree of study (Bachelor's degree) Course prerequisites: accomplish ment of MI-P-24 (Computer-Aided Materials Engineering I) Assessment methods: Course prevent the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Students is able to solve the simple specific tasks with utilisation of the commercial software, which is sommonly used in the field of dynamics and the given software is based on the finite element method FEM. Furthermore, students can make the models and solve the problems relating to various cinds of materials which are under the static, dynamic or thermal loading. Course contents: mput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Teatures and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of onstructions. With bumped or thesorable vibrations. Creation of the computational models and solve to tasks focused on the dynamic or abysis and transient analysis. Analysis of constructions with bumped or thesorable vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required lite	Seminar: 0						
Recommended semester: the 5 th semester in the 3 rd year of the full-time form of study, the 5 th semester in the 3 rd year of the part-time form of study. Degree of study: the 1 ^{sd} degree of study (Bachelor's degree) Course prerequisites: accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to prepare and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specified task involving solid body system under the dynamic loading.	Laboratory tutorial: 2 hours weekly/26 hours per semester of study; face to face						
the 5 th semester in the 3 rd year of the full-time form of study, Degree of study: the 1 st degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Assessment methods: ``o To accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to the prequer and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specific tasks involving solid body system under the dynamic loading. cearning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is commonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various cinds of materials which are under the static, dynamic or thermal loading. Course contents: mput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Constructions of tasks focused on the dynamic or bisorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic obsorbed vibrations. Recommended or required literature: Manal Solve the shole konečných prvkov I. Košice, Elfa, 1994 MTMAR, Z.: Metoda konečných prvků I a II, ČVUT Pr	Number of credits: 2						
Ite 5 th semester in the 3 rd year of the part-time form of study. Degree of study: the 1 th degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Assessment methods: To accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to the greate and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specific tasks involving solid body system under the dynamic loading. Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is rommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various cinds of materials which are under the static, dynamic or thermal loading. Course contents: mput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or thesorded vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6	Recommended semester:						
Ite 5 th semester in the 3 rd year of the part-time form of study. Degree of study: the 1 th degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Assessment methods: To accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to the prepare and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is rommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various einds of materials which are under the static, dynamic or thermal loading. Course contents: mput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or thsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6	the 5 th semester in the 3^{rd} year of the full-time form of study,						
Degree of study: the 1 st degree of study (Bachelor's degree) Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I) Assessment methods: Fo accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to the prepare and defend the project which is closely connected with utilisation of numerical method while this method is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is formornly used in the field of dynamics and the given software is based on the finite element method FEM. Furthermore, students can make the models and solve the problems relating to various tinds of materials which are under the static, dynamic or thermal loading. Course contents: Imput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or thosorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 SITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha,	the 5^{th} semester in the 3^{rd} year of the part-time form of study.						
Assessment methods: Fo accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to orrepare and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is nomonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various tinds of materials which are under the static, dynamic or thermal loading. Course contents: Course contents: nput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or thesorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic boading, heat transifer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha,1992 SENČA, Š: Aplikovaná pružnosť I: Metóda konečných prvkov STU Bratislava, 1989	Degree of study: the 1 st degree of study (Bachelor's degree)						
To accomplish the given subject, student is obliged to be present at the lessons with the reference to pecifications introduced in the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is romonly used in the field of dynamics and the given software is based on the finite element method FEM. Furthermore, students can make the models and solve the problems relating to various tinds of materials which are under the static, dynamic or thermal loading. Course contents: numer the static, dynamics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or thesored vibrations. Creation of the computational models and solution of tasks focused on the dynamic orading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 RITAR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 COK, Š. : Aplikovaná pružnosť I: Metóda konečných prvkov STU Bratislava, 1989 COK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Editionanguage: Slovak Remarks:	Course prerequisites: accomplishment of MI-P-24 (Computer-Aided Materials Engineering I)						
pecifications introduced in the study rules for the given study programme. He/she is also obliged to repare and defend the project which is closely connected with utilisation of numerical method while this nethod is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is rommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various tinds of materials which are under the static, dynamic or thermal loading. Course contents: numer the static, dynamic or thermal loading. Course contents: nput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or obsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic obading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 RITNÁR, Z.: Metoda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition	Assessment methods:						
Prepare and defend the project which is closely connected with utilisation of numerical method while this method is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is rommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various cinds of materials which are under the static, dynamic or thermal loading. Course contents: nput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Ceatures and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of ronstructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or thesorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANCO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČÁ, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks:	To accomplish the given subject, student is obliged to be present at the lessons with the reference to						
nethod is used for solution of one specified task involving solid body system under the dynamic loading. Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is sommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various stinds of materials which are under the static, dynamic or thermal loading. Course contents: mput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions, Harmonic analysis and transient analysis. Analysis of constructions with bumped or obsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANCO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČÁ, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov, STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/	specifications introduced in the study rules for the given study programme. He/she is also obliged to						
Learning outcomes of the course unit: Student is able to solve the simple specific tasks with utilisation of the commercial software, which is sommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various sinds of materials which are under the static, dynamic or thermal loading. Course contents: mput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or obsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Valuation history: /Grading system/ A B C D E FX Excellent Laudable Good	prepare and defend the project which is closely connected with utilisation of numerical method while this						
Student is able to solve the simple specific tasks with utilisation of the commercial software, which is sommonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various cinds of materials which are under the static, dynamic or thermal loading. Course contents: nput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or obsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANCO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BENČÁ, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: C D E FX Excellent Laudable Good Accepted results Pass Fail	method is used for solution of one specified task involving solid body system under the dynamic loading.						
commonly used in the field of dynamics and the given software is based on the finite element method FEM). Furthermore, students can make the models and solve the problems relating to various cinds of materials which are under the static, dynamic or thermal loading. Course contents: input data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or ubsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Ś.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good <t< td=""><td>Learning outco</td><td>omes of the cou</td><td>rse unit:</td><td></td><td></td><td></td></t<>	Learning outco	omes of the cou	rse unit:				
FEM). Furthermore, students can make the models and solve the problems relating to various tinds of materials which are under the static, dynamic or thermal loading. Course contents: Input data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or theorem vibrorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic or disorbed vibrations. Creating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	Student is able to	o solve the simp	le specific tasks	with utilisation of	f the commercial	software, which is	
tinds of materials which are under the static, dynamic or thermal loading. Course contents: nput data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or obsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	commonly used in the field of dynamics and the given software is based on the finite element method						
Course contents: Input data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements. Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or ibsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic or obsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic obding, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	(FEM). Furthermore, students can make the models and solve the problems relating to various						
Course contents:Input data. Pos-processing. Analyses of 2-D and 3-D constructions. Special features and elements.Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or ubsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations.Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: SlovakRemarks:—Evaluation history:/Grading system/ABCDEExcellentLaudableGoodAccepted resultsPassFail	kinds of materials which are under the static, dynamic or thermal loading.						
Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or ubsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha,1992 BENČA, Š.: Applications of FEM Analysis. John Wiley and Sons, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks:	Course contents:						
Features and elements of fracture mechanics. Concentration of stresses. Dynamic analysis of constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or ubsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks:							
constructions. Harmonic analysis and transient analysis. Analysis of constructions with bumped or obsorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic obading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: C D E FX Excellent Laudable Good Accepted results Pass FX							
Absorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha,1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: Evaluation history: /Grading system/ A B Cood Accepted results Pass Fail							
oading, heat transfer or transition as well as forced vibrations. Recommended or required literature: Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C A B C A B C Pass Excellent Laudable Good Accepted results Pass	absorbed vibrations. Creation of the computational models and solution of tasks focused on the dynamic						
Recommended or required literature:Manual Books relating to ADINA 2.8.6VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third EditionLanguage: SlovakRemarks: —Evaluation history: /Grading system/ABCOOKCABCoodAccepted resultsPassFail	loading, heat transfer or transition as well as forced vibrations.						
Manual Books relating to ADINA 2.8.6 VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha,1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	Recommended or required literature:						
VANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994 BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha,1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	Manual Books relating to ADINA 2.8.6						
BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992 BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	IVANČO, V KUBÍN, K KOSTOLNÝ, K.: Metóda konečných prvkov I. Košice, Elfa, 1994						
BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989 COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	BITNÁR, Z.: Metoda konečných prvků I a II, ČVUT Praha, 1992						
COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	BENČA, Š.: Aplikovaná pružnosť I: Metóda konečných prvkov. STU Bratislava, 1989						
Language: Slovak Remarks: — Evaluation history: /Grading system/ A B C D E FX Excellent Laudable Good Accepted results Pass Fail	COOK, R. D.: Concepts and Applications of FEM Analysis. John Wiley and Sons, 1989, Third Edition						
Remarks: —Evaluation history: /Grading system/ABCDEFXExcellentLaudableGoodAccepted resultsPassFail	Language: Slovak						
ABCDEFXExcellentLaudableGoodAccepted resultsPassFail	Remarks: —						
Excellent Laudable Good Accepted results Pass Fail	Evaluation hist	tory: /Grading	; system/				
	A	В	С	D	E	FX	
activities das line Vermo DhD	Excellent	Laudable	Good	Accepted results	Pass	Fail	
Lecturers: doc. Ing. Ján Vavro, PhD.	Lecturers: doc						
Last modification: 31.03.2014							
Supervisor: prof. Ing. Darina Ondrušová, PhD.	Supervisor: p	rof. Ing. Darina	e Ondrušová, Pl	nD.			